

GCE Examinations Advanced Subsidiary / Advanced Level

## Statistics Module S1

## Paper J MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.



Written by Shaun Armstrong & Chris Huffer © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

## S1 Paper J – Marking Guide

|    |            |                                                                                                                                 |          | www.my | 14 43 AN  |
|----|------------|---------------------------------------------------------------------------------------------------------------------------------|----------|--------|-----------|
|    |            | S1 Paper J – Marking Guide                                                                                                      |          |        | Sthsclor, |
| 1. | (a)        | cum. freqs: 3, 9, 24, 44, 53, 55                                                                                                |          |        | SO.COM    |
|    |            | (1) median = $28^{\text{m}} = 23.5 + (\frac{4}{20} \times 2) = 23.9 \text{ g}$                                                  | MIAI     |        |           |
|    |            | (11) $33^{-4}$ percentile = $\frac{1}{100} \times (55 + 1)$ th = 18.48 <sup>-4</sup> value                                      | MI       |        |           |
|    |            | $=21.5 + (\frac{2.40}{15} \times 2) = 22.8 \text{ g}$                                                                           | MI AI    |        |           |
|    | <i>(b)</i> | 24 - 25: class width $2 \rightarrow 1 \text{ cm}$ $\therefore$ class width $1 \rightarrow 0.5 \text{ cm}$                       | M1       |        |           |
|    |            | freq. den. = $\frac{20}{2}$ =10 $\rightarrow$ 20 cm $\therefore$ freq. den. 1 $\rightarrow$ 2 cm                                | M1       |        |           |
|    |            | (i) $20 - 21$ : class width $2 \therefore$ width 1 cm                                                                           | A1       |        |           |
|    |            | (ii) 2(20) alor midth 4 midth 2 mi                                                                                              |          |        |           |
|    |            | (ii) 26 - 29: class width 4 : width 2 cm<br>freq. den. = $\frac{9}{2}$ = 2.25 : height 4.5 cm                                   | AI<br>Al | (11)   |           |
|    |            |                                                                                                                                 |          | (11)   |           |
| 2. | (a)        | $\sum \mathbf{P}(x) = k + \frac{1}{2}k + \frac{1}{3}k + \frac{1}{4}k = \frac{25}{12}k = 1  \therefore \ k = \frac{12}{25}$      | M2 A1    |        |           |
|    | <i>(b)</i> | $\frac{12}{25} + \frac{6}{25} = \frac{18}{25}$                                                                                  | M1 A1    |        |           |
|    | (c)        | $\sum x \mathbf{P}(x) = \frac{12}{25} + \frac{12}{25} + \frac{12}{25} + \frac{12}{25} = \frac{48}{25}$                          | M1 A1    |        |           |
|    | (d)        | $E(X^{2}) = \sum x^{2}P(x) = \frac{12}{25} + \frac{24}{25} + \frac{36}{25} + \frac{48}{25} = \frac{24}{5}$                      | M1 A1    |        |           |
|    |            | $E(X^2 + 2) = \frac{24}{5} + 2 = \frac{34}{5}$                                                                                  | M1 A1    | (11)   |           |
| 3. | (a)        | $P(Z > \frac{165 - 156}{\sqrt{73}}) = P(Z > 1.05) = 0.1469$                                                                     | M2 A1    |        |           |
|    | <i>(b)</i> | 1 - (0.5 + 0.1469) = 0.3531                                                                                                     | M1 A1    |        |           |
|    | (c)        | $P(14yo > 165) = P(Z > \frac{165 - 160}{\sqrt{79}}) = P(Z > 0.56) = 0.2877$                                                     | M2 A1    |        |           |
|    |            | $P(both > 165) = 0.1469 \times 0.2877 = 0.0423$ (3sf)                                                                           | M1 A1    |        |           |
|    | (d)        | more as e.g. answer to <i>(c)</i> satisfies condition but can also have one less than 165 if the other is sufficiently over 165 | B2       | (12)   |           |
| 4. | (a)        | mean = $\frac{427}{20}$ = 21.35 minutes                                                                                         | M1 A1    |        |           |
|    |            | variance = $\frac{11077}{20} - 21.35^2 = 98.0 \text{ minutes}^2(3\text{ sf})$                                                   | M2 A1    |        |           |
|    | (b)        | for 2 <sup>nd</sup> sample: $\frac{\Sigma t}{30} = 18.5$ $\therefore \Sigma t = 30 \times 18.5 = 555$                           | M1       |        |           |
|    |            | $\frac{\Sigma t^2}{30} - 18.5^2 = 8.2^2  \therefore  \Sigma t^2 = 30(8.2^2 + 18.5^2) = 12284.7$                                 | M2 A1    |        |           |
|    |            | for combined sample: mean = $\frac{427+555}{50}$ = 19.6 minutes (3sf)                                                           | M1 A1    |        |           |
|    |            | variance = $\frac{11077+12284.7}{50} - 19.64^2 = 81.5$ minutes <sup>2</sup> (3sf)                                               | M1 A1    | (13)   |           |



## Performance Record – S1 Paper J

www.mymathscioud.com

| Question no. | 1                           | 2                 | 3               | 4                    | 5           | 6                                 | Total |
|--------------|-----------------------------|-------------------|-----------------|----------------------|-------------|-----------------------------------|-------|
| Topic(s)     | interpolation,<br>histogram | discrete<br>r. v. | normal<br>dist. | mean and<br>variance | probability | scatter<br>diagram,<br>regression |       |
| Marks        | 11                          | 11                | 12              | 13                   | 14          | 14                                | 75    |
| Student      |                             |                   |                 |                      |             |                                   |       |
|              |                             |                   |                 |                      |             |                                   |       |
|              |                             |                   |                 |                      |             |                                   |       |
|              |                             |                   |                 |                      |             |                                   |       |
|              |                             |                   |                 |                      |             |                                   |       |
|              |                             |                   |                 |                      |             |                                   |       |
|              |                             |                   |                 |                      |             |                                   |       |
|              |                             |                   |                 |                      |             |                                   |       |
|              |                             |                   |                 |                      |             |                                   |       |
|              |                             |                   |                 |                      |             |                                   |       |
|              |                             |                   |                 |                      |             |                                   |       |
|              |                             |                   |                 |                      |             |                                   |       |
|              |                             |                   |                 |                      |             |                                   |       |
|              |                             |                   |                 |                      |             |                                   |       |
|              |                             |                   |                 |                      |             |                                   |       |
|              |                             |                   |                 |                      |             |                                   |       |
|              |                             |                   |                 |                      |             |                                   |       |
|              |                             |                   |                 |                      |             |                                   |       |
|              |                             |                   |                 |                      |             |                                   |       |
|              |                             |                   |                 |                      |             |                                   |       |
|              |                             |                   |                 |                      |             |                                   |       |